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(57) ABSTRACT

A cache memory receives a request to perform a write opera-
tion. The request specifies an address. A first determination is
made that the cache memory does not include a cache line
corresponding to the address. A second determinationis made
that the address is between a previous value of a stack pointer
and a current value of the stack pointer. A third determination
is made that a write history indicator is set to a specified value.
The write operation is performed in the cache memory with-
out waiting for a cache fill corresponding to the address to be
performed, in response to the first, second, and third determi-
nations.
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to perform a write operation. The
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SELECTIVE CACHE FILLS IN RESPONSE TO
WRITE MISSES

TECHNICAL FIELD

The present embodiments relate generally to cache
memory, and more specifically to policies for cache memory
write operations.

BACKGROUND

A cache memory (e.g., a write-back cache) may implement
awrite-allocate policy in which a write miss results in a cache
fill operation. In the cache fill operation, a cache line is
fetched from a lower level of memory and installed in the
cache memory, after which the write is performed. Writes are
stalled while the cache fill operation is performed. Cache
lines fetched in accordance with the write-allocate policy,
however, may sometimes contain data that is no longer refer-
enced by the program being executed.

SUMMARY

Embodiments are disclosed in which cache fills in response
to write misses are selectively performed based at least in part
on the stack pointer.

In some embodiments, a method of managing a cache
memory includes receiving in the cache memory a request to
perform a write operation. The request specifies an address. A
first determination is made that the cache memory does not
include a cache line corresponding to the address. A second
determination is made that the address is between a previous
value of a stack pointer and a current value of the stack
pointer. A third determination is made that a write history
indicator is set to a specified value. The write operation is
performed in the cache memory without waiting for a cache
fill corresponding to the address to be performed, in response
to the first, second, and third determinations.

In some embodiments, a cache memory system includes a
cache data array to store cache lines. The cache memory
system also includes a cache controller to receive requests to
perform write operations, the requests specifying addresses;
to determine whether the cache data array includes cache
lines corresponding to addresses specified in respective write
requests; to determine whether addresses specified in respec-
tive write requests are between a previous value of a stack
pointer and a current value of the stack pointer; to determine
whether one or more write history indicators are set to a
specified value; and to perform a write operation without first
performing a cache fill operation corresponding to an address,
in response to determining that the address is between the
previous value of the stack pointer and the current value of the
stack pointer, that the cache data array does not include a
cache line corresponding to the address, and that a write
history indicator is set to the specified value.

BRIEF DESCRIPTION OF THE DRAWINGS

The present embodiments are illustrated by way of
example and are not intended to be limited by the figures of
the accompanying drawings.

FIG. 1 is a block diagram showing a memory system in
accordance with some embodiments.

FIGS. 2A-2C show a stack and corresponding stack point-
ers in accordance with some embodiments.

FIG. 3 is ablock diagram of a cache memory in accordance
with some embodiments.
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FIG. 4 shows a data structure for a write history table in the
cache memory of FIG. 3 in accordance with some embodi-
ments.

FIG. 5 is a flowchart showing a method of managing a
cache memory in accordance with some embodiments.

Like reference numerals refer to corresponding parts
throughout the figures and specification.

DETAILED DESCRIPTION

Reference will now be made in detail to various embodi-
ments, examples of which are illustrated in the accompanying
drawings. In the following detailed description, numerous
specific details are set forth in order to provide a thorough
understanding of the disclosure. However, some embodi-
ments may be practiced without these specific details. Inother
instances, well-known methods, procedures, components,
and circuits have not been described in detail so as not to
unnecessarily obscure aspects of the embodiments.

FIG.1isablock diagram showing a memory system 100 in
accordance with some embodiments. The memory system
100 includes a plurality of processing modules 102 (e.g., four
processing modules 102), each of which includes a first pro-
cessor core 104-0 and a second processor core 104-1. Each of
the processor cores 104-0 and 104-1 includes a level 1
instruction cache memory (L1-I$) 106 to cache instructions
to be executed by the corresponding processor core 104-0 or
104-1 and a level 1 data cache (I.1-D$) memory 108 to store
data to be referenced by the corresponding processor core
104-0 or 104-1 when executing instructions. (The term data
as used herein does not include instructions unless otherwise
noted.) A level 2 (L.2) cache memory 110 is shared between
the two processor cores 104-0 and 104-1 on each processing
module 102.

A cache-coherent interconnect interconnect 118 couples
the L2 cache memories 110 on the processing modules 102 to
alevel 3 (L3) cache memory 112. In the example of FIG. 1,
the L1 cache memories 106 and 108 are the highest-level
cache memories in the memory system 100 and the L3 cache
memory 112 is the lowest-level cache memory in the memory
system 100. Because it is the lowest-level cache memory, the
L3 cache memory 112 may be referred to as the last-level
cache (LLC). In other examples, a memory system may
include an LL.C below the [.3 cache memory 112. In some
embodiments, the .1 cache memories 106 and 108, L2 cache
memories 110, and L3 cache memory 112 are implemented
using static random-access memory (SRAM).

In addition to coupling the .2 cache memories 110 to the
L3 cache memory 112, the cache-coherent interconnect 118
is coupled to main memory 118 through memory interfaces
122. In some embodiments, the main memory 118 is imple-
mented using dynamic random-access memory (DRAM). In
some embodiments, the memory interfaces 122 coupling the
cache-coherent interconnect 118 to the main memory 124 are
double-data-rate (DDR) interfaces. The cache-coherent inter-
connect 118 is also connected to input/output (I/O) interfaces
128, which allow the cache-coherent interconnect 118, and
through it the processing modules 102, to be coupled to
peripheral devices. The I/O interfaces 128 may include inter-
faces to a hard-disk drive (HDD) or solid-state drive (SSD)
126. An SSD 126 may be implemented using Flash memory
or other nonvolatile solid-state memory. The main memory
124 and/or HDD/SDD 122 may store one or more applica-
tions for execution by the processor cores 104-0 and 104-1.

The cache-coherent interconnect 118 maintains cache
coherency throughout the system 100. Examples of cache-
coherence protocols that may be implemented in the system
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100 include, but are not limited to, MSI (Modified-Shared-
Invalid), MOESI (Modified-Owned-Exclusive-Shared-In-
valid), MOSI (Modified-Owned-Shared-Invalid), and MESI
(Modified-Exclusive-Shared-Invalid) protocols, with each
acronym corresponding to the states available in the respec-
tive protocol. In some embodiments, the cache-coherence
protocol implemented in the system 100 is directory-based or
snooping based.

The L1 cache memories 106 and 108, 1.2 cache memories
110, L3 cache memory 112, and main memory 124 (and in
some embodiments, the HDD/SSD 126) form a memory hier-
archy in the memory system 100. Each level of this hierarchy
has less storage capacity but faster access time than the level
below it: the L1 cache memories 106 and 108 offer less
storage but faster access than the 1.2 cache memories 110,
which offer less storage but faster access than the [.3 cache
memory 112, which offers less storage but faster access than
the main memory 124.

The memory system 100 is merely an example of a multi-
level memory system configuration; other configurations are
possible. For example, a processing module 102 may include
a single processor core 104-0 or 104-1, which may have a
dedicated L2 cache memory 110. Alternatively, a processing
module 102 may include three or more processor cores,
which may share an [.2 cache memory 110. In other embodi-
ments, a memory system may include a single processor core
104-0 or 104-1 with an L.1-I$ 106 and L1-D$ 108; the single
processor core 104-0 or 104-1 is coupled to an L2 cache
memory 110, L3 cache memory 112, main memory 124, and
HDD/SSD 126. For single-core systems, cache coherency is
not an issue and the cache-coherent interconnect 118 is
replaced with an interconnect that does not implement a
coherency protocol.

A processor core 104-0 or 104-1 may issue a write request
to its respective L1-D$ 108. The write request specifies a
virtual address and data to be written to the virtual address.
Before performing a write operation in response to the write
request, the .1-D$ 108 determines whether it currently stores
a cache line corresponding to the specified virtual address. If
the L1-D$ 108 does not currently store a cache line corre-
sponding to the specified virtual address, a write miss is said
to occur. In response to the write miss, the L1-D$ 108 may
implement a write-allocate policy: the cache line correspond-
ing to the specified virtual address is fetched from a lower
level of memory (e.g., L2 cache memory 110, .3 cache
memory 112, main memory 124, or HDD/SDD 122) and
installed in the I.1-D$ 108. This fetching and installation of
the cache line is referred to as a cache fill operation. Once the
cache line has been installed in the L1-D$ 108, the write
operation is performed by writing the data specified in the
write request to the cache line.

Writes in the processor core 104-0 or 104-1 stall while the
cache fill operation is performed in response to a write miss.
For example, the processor core 104-0 or 104-1 may include
a store bufter (e.g., a post-commit store buffer) coupled to the
L1-D$ 108. The stall resulting from a write miss causes back
pressure in the store buffer. Also, a fill buffer may be coupled
between the L1-D$ 108 and a lower level of memory (e.g., the
L2 cache memory 112). The cache fill operation may involve
allocation of an entry in the fill buffer for the cache line being
fetched.

Furthermore, cache lines fetched in accordance with the
write-allocate policy may sometimes contain data that is no
longer referenced by the program being executed. Such data
is said to be dead. Cache fills therefore may be performed
selectively, based on a determination as to whether a respec-
tive cache line contains data that is dead. If a cache line
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corresponding to an address specified in a write request is
determined to store data that is known to be dead, the write
operation corresponding to the write request is performed
without first performing a cache fill. This determination may
be based at least in part on the stack pointer.

FIGS. 2A-2C show a stack 202 in accordance with some
embodiments. The stack 202, which may also be referred to as
a call stack, execution stack, control stack, run-time stack, or
machine stack, is a segment of virtual memory in a program
being executed by one or more processor cores 104-0 and/or
104-1. The stack 202 grows on function calls and shrinks on
returns. In the example of FIGS. 2A-2C, the stack 202 starts
at a relatively high virtual address and grows in the direction
of lower virtual addresses (e.g., grows toward the heap).
Information stored in the stack 202 includes, but is not limited
to, return addresses and stack-allocated variables (e.g., local
variables and values spilled from registers).

A current stack pointer 204 points to the top of the stack
202. In some embodiments, the current stack pointer 204
points to the first virtual address beyond the stack 202.
Because the stack 202 grows in the direction of lower virtual
addresses, the current stack pointer 204 therefore points to the
first virtual address below the stack 202. Alternatively, the
current stack pointer 204 points to the top virtual address in
the stack 202, which in the example of FIG. 2A is the lowest
virtual address in the stack 202. The stack 202 grows by
decrementing the current stack pointer 204 and shrinks by
incrementing the current stack pointer 204. A “push” is per-
formed to grow the stack 202 on a function call: information
is pushed onto the stack 202 in the memory space allocated to
the stack 202 by decrementing the current stack pointer 204.
A “pop” is performed to shrink the stack 202 on a return:
information in the memory space that is de-allocated from the
stack 202 by incrementing the current stack pointer 204 pops
off the stack 202.

FIG. 2B illustrates the result of a push: the current stack
pointer 204 is decremented with respect to its value in FIG.
2A. A previous stack pointer 206 points to the previous posi-
tion of the current stack pointer 204. The virtual addresses
between the previous stack pointer 206 and current stack
pointer 204 compose a memory space 208 allocated for the
function call corresponding to the push. (In the example of
FIGS. 2A-2C, avirtual address is between the previous stack
pointer 206 and current stack pointer 204 if it is below the
previous stack pointer 206 and above the current stack pointer
204.) The memory space 208 is said to be recently allocated,
because itis allocated by the push that moves the current stack
pointer 204 to its new position.

FIG. 2C illustrates the result of a pop associated with the
push of FIG. 2B (i.e., corresponding to a return upon comple-
tion of the function call for the push of FIG. 2B). The current
stack pointer 204 is incremented back to its value in FIG. 2A.
The previous stack pointer 206 now points to the virtual
address to which the current stack pointer 204 pointed in FIG.
2B. The previous stack pointer 206 in FIG. 2C is beyond the
current stack pointer 204 and outside of the stack 202.

While FIGS. 2A-2C illustrate a stack 202 that grows in the
direction of decreasing virtual addresses, a stack may also
grow in the direction of increasing virtual addresses, such that
the current stack pointer is incremented to grow the stack and
decremented to shrink the stack.

For a stack 202 that grows in the direction of decreasing
virtual addresses, an address is said to be beyond a stack
pointer (e.g., the current stack pointer 204 or previous stack
pointer 206) is it is less than the address for the stack pointer
(i.e., is less than the stack pointer). For a stack that grows in
the direction of increasing virtual addresses, an address is said
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to be beyond a stack pointer is it is greater than the address for
the stack pointer (i.e., is greater than the stack pointer). An
address beyond the current stack pointer 204 is thus outside of
the stack.

For embodiments in which the current stack pointer points
to the first virtual address beyond the stack, a virtual address
is between the previous stack pointer and current stack
pointer ifit is equal to or beyond the previous stack pointer but
is neither equal to nor beyond the current stack pointer. Such
a virtual address is within recently-allocated memory space
(e.g., the recently-allocated memory space 208, FIG. 2B). For
the stack 202, which grows in the direction of lower virtual
addresses, a virtual address is thus between the previous stack
pointer 206 and the current stack pointer 204 if it is less than
or equal to the previous stack pointer 206 and greater than the
current stack pointer 204. For a stack that grows in the direc-
tion of higher virtual addresses, a virtual address is thus
between the previous stack pointer and the current stack
pointer if it is greater than or equal to the previous stack
pointer and less than the current stack pointer.

For embodiments in which the current stack pointer points
to the top virtual address in the stack, a virtual address is
between the previous stack pointer and current stack pointer
if it is beyond the previous stack pointer and is not beyond the
current stack pointer. Such a virtual address is within
recently-allocated memory space (e.g., the recently-allocated
memory space 208, FIG. 2B). For the stack 202, which grows
in the direction of lower virtual addresses, a virtual address is
thus between the previous stack pointer 206 and the current
stack pointer 204 if it is less than the previous stack pointer
206 and greater than or equal to the current stack pointer 204.
For a stack that grows in the direction of higher virtual
addresses, a virtual address is thus between the previous stack
pointer and the current stack pointer if it is greater than the
previous stack pointer and less than or equal to the current
stack pointer.

FIG. 3 is a block diagram of a cache memory 300 in
accordance with some embodiments. The cache memory 300
is a particular level of cache memory in the memory system
100 (FIG. 1). For example, the cache memory 300 is an
example of an L.1-D$ 108, or alternatively is an example of an
L2 cache memory 110 or the [.3 cache memory 112 (FIG. 1).
The cache memory 300 includes a cache data array 312 and a
cache tag array 310. A cache controller 302 is coupled to the
cache data array 312 and cache tag array 310 to control
operation of the cache data array 312 and cache tag array 310.

Addresses (e.g., virtual addresses or corresponding physi-
cal addresses) for respective cache lines are divided into
multiple portions, including an index and a tag. Cache lines
(which may also be referred to as blocks) are installed in the
cache data array 312 at locations indexed by the index por-
tions of the corresponding addresses, and tags are stored in
the cache tag array 310 at locations indexed by the index
portions of the corresponding addresses. (A cache line may
correspond to a plurality of addresses that share common
index and tag portions.) The cache data array 312 and cache
tag array 310 are thus indexed by the index portions of the
addresses. In some embodiments, the [.1-D$ 108 is indexed
by index portions of virtual addresses. In some embodiments,
the L2 cache memory 110 and L3 cache memory 112 are
indexed by index portions of physical addresses (e.g., as
provided by page tables based on corresponding virtual
addresses specified in memory access requests such as write
requests).

In the example of FIG. 3, the cache data array 312 is
set-associative: for each index value, it includes a set of n
locations at which a particular cache line may be installed,
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where n is an integer greater than one. The cache data array
312 is thus divided into n ways, numbered O to n-1; each
location in a given set is situated in a distinct way. In one
example, n is 16. The cache data array 312 includes m sets,
numbered 0 to m-1, where m is an integer greater than one.
The sets are indexed by the index portions of addresses. The
cache tag array 310 is similarly divided into sets and ways.

While FIG. 3 shows a set-associative cache data array 312,
the cache data array 312 (and the cache tag array 310) may
instead be direct-mapped. A direct-mapped cache effectively
only has a single way.

The cache controller 302 includes a stack pointer ($sp)
register 304 to store stack pointers (e.g., including the current
stack pointer 204 and previous stack pointer 206, FIGS.
2A-2C). The contents of the stack pointer register 304 may be
updated in response to instructions that increment or decre-
ment the current stack pointer 204. In some embodiments, the
stack pointer register 304 stores both virtual and physical
addresses of the stack pointers (e.g., of the current stack
pointer 204 and previous stack pointer 206, FIGS. 2A-2C).

The cache controller 302 also includes replacement logic
306 to select cache lines for eviction. The cache controller
302 further includes a write history table 308 that stores write
history indicators. The write history indicators indicate, for
example, whether a respective cache line or group of cache
lines has been written to since being allocated for the stack
202. Examples of the write history table 308 are described
below with respect to FIG. 4.

Write requests are provided to the cache controller 302
(e.g., from a processor core 104-0 or 104-1, FIG. 1). Each
write request specifies an address (e.g., a virtual address, or
corresponding physical address). If a tag stored at a location
in the cache tag array 310 indexed by the index portion of the
specified address matches the tag portion of the specified
address, then a write hit occurs. A write operation is then
performed to write the data specified in the write request to
the cache line in the set and way that contain the matching tag.
Ifno tag stored at alocation in the cache tag array 310 indexed
by the index portion of the specified address matches the tag
portion of the specified address, however, then a write miss
occurs. In the event of a write miss, the cache controller 302
determines whether to perform a cache fill followed by a write
operation, or whether to proceed with the write operation
without performing a cache fill, despite the write miss. This
determination may be based on a comparison of the specified
address to the previous stack pointer 206 and current stack
pointer 204 (FIGS. 2A-2C), and also based on a value of a
corresponding write history indicator in the write history
table 308. Examples of this determination are described
below for the method 500 of FIG. 5. The cache controller 302
thus selectively implements a write-allocation policy.

FIG. 4 shows a data structure for the write history table 308
(FIG. 3) in accordance with some embodiments. The write
history table 308 includes a plurality of rows 402. Each row
402 includes a field 406 to store a bit that serves as a write
history indicator and a field 404 to store a corresponding
index value. The number of rows 402 in the write history table
308 is arbitrary and may be less than the number of cache
lines in the cache data array 312 (FIG. 3). For example, the
write history table 308 may include eight rows or 16 rows.

In some embodiments, each row 402 corresponds to a
distinct cache line (and thus to a distinct plurality of
addresses, since each cache line includes a specified number
of'addresses). The index values in the fields 404 may equal the
offsets of the cache lines from the value of the previous stack
pointer 206, such that the rows 402 correspond to the cache
lines in the memory space 208 allocated in response to the
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most recent function call. In one example, the first row 402
corresponds to the cache line identified by the previous stack
pointer 206, the second row 402 corresponds to the first cache
line beyond the previous stack pointer 206, and so on. In
another example, the first row 402 corresponds to the first
cache line beyond the previous stack pointer 206, the second
row 402 corresponds to the second cache line beyond the
previous stack pointer 206, and so on. The write history
indicators accordingly are indexed with respect to the value of
the previous stack pointer 206.

The write history indicators in the fields 406 are all setto a
specified value (e.g., the bits are set to ‘1°, or alternately ‘0”)
each time the current stack pointer 204 is decremented to
allocate memory space (e.g., memory space 208, FIG. 2B) for
the stack 202 (FIG. 2). When a cache line is then written to,
the corresponding write history indicator is reset (e.g., the bit
is set to “0’, or alternately ‘1”), such that it no longer has the
specified value.

In some embodiments, each row 402 corresponds to a
distinct group of cache lines (e.g., a group of contiguous
cache lines). Each write history indicator in a respective field
406 therefore corresponds to a distinct group of cache lines.
The write history indicators in the fields 406 are all set to a
specified value (e.g., the bits are set to ‘1°, or alternately ‘0”)
each time the current stack pointer 204 is decremented to
allocate memory space (e.g., memory space 208, FIG. 2B) for
the stack 202 (FIG. 2). When a cache line in a group corre-
sponding to a write history indicator in a respective row 402
is then written to, the write history indicator is reset (e.g., the
bitissetto ‘0’, or alternately ‘1), such that it no longer has the
specified value.

In some embodiments, the write history table 308 is
replaced with a register that stores a single write history
indicator (e.g., a single bit) for the cache data array 312. The
single write history indicator is set to a specified value (e.g.,
the bit is set to ‘1°, or alternately ‘0’) each time the current
stack pointer 204 is decremented to allocate memory space
(e.g., memory space 208, FIG. 2B) for the stack 202 (FIG. 2).
The single write history indicator is reset (e.g., the bit is set to
‘0’, or alternately ‘1), such that it no longer has the specified
value, in response to the first eviction of a dirty cache line
from the allocated memory space.

FIG. 5 is a flowchart showing a method 500 of managing
the cache memory 300 (FIG. 3) in accordance with some
embodiments. In the method 500, the cache memory 300
(e.g., the cache controller 302, FIG. 3) receives (502) a
request (e.g., a write request) to perform a write operation.
The request specifies an address.

A determination is made (504) as to whether the cache
memory 300 includes a cache line corresponding to the
address specified in the request. If it does (504—Yes), a write
hit occurs; if it does not (504-No), a write miss occurs.

In the event of a write hit (504—Yes), the write operation
corresponding to the request is performed (512) in the cache
memory 300. For example, data associated with the request is
written to the cache line in the cache data array 312 that
produced the write hit.

In the event of a write miss (504—No), a determination is
made (506) as to whether the address specified in the request
is between a previous value of a stack pointer and a current
value of the stack pointer. For example, the cache controller
302 determines whether the address is between the previous
stack pointer 206 and current stack pointer 204, and thus is
within the allocated memory space 208 (FIG. 2B). The cache
controller 302 makes this determination based on stack
pointer values stored in the stack pointer register 304.
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Ifthe address is not between the previous value of the stack
pointer and the current value of the stack pointer (506—No),
a cache fill is performed (510). A cache line corresponding to
the address is fetched from a lower level of memory and
installed in the cache memory 300. For example, data for the
cache line is installed in the cache data array 312 and the tag
for the cache line is written to a corresponding location in the
cache tag array 310. The location in which the cache line is
installed may be determined using the replacement logic 306.
After the cache fill is performed (510), the write operation
corresponding to the request is performed (512) in the newly
installed cache line.

If the address is between the previous value of the stack
pointer and the current value of the stack pointer (506—Yes),
a determination is made (508) as to whether a write history
indicator is set to a specified value. In some embodiments, the
write history indicator is stored in the write history table 308.
For example, the write history indicator is stored in an entry
406 of a row 402 that corresponds to the cache line that
includes the address, or to a group of cache lines, one of which
includes the address. Alternatively, the write history indicator
is a single bit for the entire cache memory 300 (and thus for
the entire allocated memory space 208, FIG. 2B) as stored in
a register in the cache controller 302.

Ifthe write history indicator is not set to the specified value
(508—No), the cache fill is performed (510), followed by the
write operation (512).

If, however, the write history indicator is set to the specified
value (508—Yes), then the write operation is performed (512)
without first performing the cache fill operation. The write
operation is performed (512) in a cache line selected based on
the address (e.g., in accordance with a replacement policy
implemented by the replacement logic 306, FIG. 3). In some
embodiments, the width of the data for the request, and thus
for the write operation, is less than the cache line width. If so,
performing (512) the write operation without first performing
the cache fill operation may include writing the data to a
specified portion of the cache line and writing predefined data
(e.g., zeros) to the remainder of the cache line (e.g., for
security purposes).

Performing the write operation without first performing the
cache fill operation reduces read bandwidth and avoids a stall
in response to the write miss. Back pressure in the store buffer
is reduced and fill buffer utilization is reduced.

In some embodiments, the method 500 is performed in a
multi-core system (e.g., the system 100, FIG. 1) in accor-
dance with a coherence protocol (e.g., an MSI, MOESI,
MES]I, or MOSI protocol), such as a directory-based coher-
ence protocol or a snooping-based coherence protocol. The
coherence protocol includes an Invalid-to-Modified-via-up-
grade state transition that occurs to allow the write operation
to be performed without first performing the cache fill opera-
tion (e.g., in response to the combination of determinations
504—No, 506—Yes, and 508—Yes). The Invalid-to-Modi-
fied-via-upgrade transition asks for exclusive write permis-
sion for performing (512) the write operation, but does not ask
for the data block that would be fetched to perform (510) the
cache fill. If the cache fill is performed (510) before the
performing (512) the write operation (e.g., in response to
determination 506—No or 508—No), an Invalid-to-Modified
transition occurs that asks for both write permission and the
data block.

The method 500 may be repeated in response to additional
requests to perform write operations.

While the method 500 includes a number of operations that
appear to occur in a specific order, it should be apparent that
the method 500 can include more or fewer operations, some
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of which can be executed serially or in parallel. An order of
two or more operations may be changed, performance of two
or more operations may overlap, and two or more operations
may be combined into a single operation. For example, the
order of the determinations 504 and 506 may be reversed. In
another example, the determination 508 may be omitted, such
that the write operation is performed (512) without first per-
forming the cache fill in response to determining (504—No)
that the cache memory does not include a cache line corre-
sponding to the address and determining (506—Yes) that the
address is between the previous and current values of the
stack pointer.

In some embodiments, a system (e.g., the memory system
100, FIG. 1) includes a non-transitory computer-readable
medium (e.g., the HDD/SSD 126, FIG. 1, or one or more
other nonvolatile memory devices) that stores instructions
that, when executed by processor circuitry (e.g., in the cache
controller 302, FIG. 3), cause all or a portion of the method
500 (FIG. 5) to be performed.

The foregoing description, for purpose of explanation, has
been described with reference to specific embodiments. How-
ever, the illustrative discussions above are not intended to be
exhaustive or to limit all embodiments to the precise forms
disclosed. Many modifications and variations are possible in
view of the above teachings. The disclosed embodiments
were chosen and described to best explain the underlying
principles and their practical applications, to thereby enable
others skilled in the art to best implement various embodi-
ments with various modifications as are suited to the particu-
lar use contemplated.

What is claimed is:

1. A method of managing cache memory, comprising:

in a cache memory, receiving a first request to perform a

first write operation, the first request specifying a first
address;

making a first determination that the cache memory does

not include a cache line corresponding to the first
address;

making a second determination that the first address is

between a previous value of a stack pointer and a current
value of the stack pointer;

making a third determination that a write history indicator

is set to a specified value; and

performing the first write operation in the cache memory

without waiting for a cache fill corresponding to the first
address to be performed, in response to the first, second,
and third determinations.

2. The method of claim 1, wherein making the second
determination comprises determining that the first address is
less than or equal to the previous value of the stack pointer and
greater than the current value of the stack pointer.

3. The method of claim 1, further comprising:

storing the write history indicator in an entry of a table that

comprises a plurality of entries corresponding to respec-
tive cache lines in the cache memory.

4. The method of claim 3, further comprising:

setting the plurality of entries to the specified value when

the stack pointer is moved to allocate memory space for
stack data; and

resetting a respective entry to not have the specified value

in response to a write operation in a cache line corre-
sponding to the respective entry.

5. The method of claim 3, further comprising indexing the
plurality of entries in the table with respect to the previous
value of the stack pointer.
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6. The method of claim 1, further comprising:

storing the write history indicator in an entry of a table that
comprises a plurality of entries corresponding to respec-
tive groups of cache lines in the cache memory;

setting the plurality of entries to the specified value when

the stack pointer is moved to allocate memory space for
stack data; and

resetting a respective entry to not have the specified value

in response to a write operation in a cache line in a group
corresponding to the respective entry.

7. The method of claim 1, wherein the write history indi-
cator is a single bit for the cache memory, the method further
comprising:

setting the single bit to the specified value when the stack

pointer is moved to allocate memory space for stack
data; and

resetting the single bit to not have the specified value in

response to eviction of a dirty cache line from the allo-
cated memory space.
8. The method of claim 1, further comprising:
inthe cache memory, receiving a second request to perform
a second write operation, the second request specifying
a second address;

determining that the cache memory does not include a
cache line corresponding to the second address, that the
second address is between the previous value of the
stack pointer and the current value of the stack pointer,
and that a write history indicator is not set to the speci-
fied value;

in response to the determining, performing a cache fill to

install a cache line corresponding to the second address
in the cache memory; and

performing the second write operation in the cache line

corresponding to the second address.
9. The method of claim 1, further comprising:
inthe cache memory, receiving a second request to perform
a second write operation, the second request specifying
a second address;

determining that the second address is not between the
previous value of the stack pointer and the current value
of the stack pointer;

in response to the determining, performing a cache fill to

install a cache line corresponding to the second address
in the cache memory; and

performing the second write operation in the cache line

corresponding to the second address.

10. The method of claim 1, wherein:

a width of data for the first request is less than a cache line

width for the cache memory; and

performing the first write operation comprises:

writing the data for the first request to a first portion of a
selected cache line; and
writing zeros to a remainder of the selected cache line.

11. The method of claim 1, wherein:

the first address is a virtual address;

the cache memory comprises a level-one data cache; and

the level-one data cache comprises a data array indexed by

virtual addresses.

12. The method of claim 1, wherein:

the cache memory comprises a level-one data cache situ-

ated in a processor of a multiprocessor system; and

the method further comprises obtaining exclusive permis-

sion to perform the first write operation in accordance
with a cache-coherence protocol.
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13. A cache memory system, comprising:

a cache data array to store cache lines; and

a cache controller to:

receive requests to perform write operations, the
requests specifying addresses;

determine whether the cache data array includes cache
lines corresponding to addresses specified in respec-
tive write requests;

determine whether addresses specified in respective
write requests are between a previous value of a stack
pointer and a current value of the stack pointer;

determine whether one or more write history indicators
are set to a specified value; and

perform a first write operation without first performing a
cache fill operation corresponding to a respective first
address, in response to determining that the first
address is between the previous value of the stack
pointer and the current value of the stack pointer, that
the cache data array does not include a cache line
corresponding to the first address, and that a write
history indicator is set to the specified value.

14. The cache memory system of claim 13, wherein the
cache controller is to determine whether the addresses speci-
fied in the respective write requests are between a previous
value of the stack pointer and a current value of the stack
pointer by determining whether the addresses are less than or
equal to the previous value of the stack pointer and greater
than the current value of the stack pointer.

15. The cache memory system of claim 13, wherein:

the write history indicator is a first write history indicator;

and

the cache memory system further comprises a table storing

a plurality of write history indicators including the first
write history indicator, wherein respective write history
indicators of the plurality correspond to respective cache
lines.
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16. The cache memory system of claim 13, wherein:

the write history indicator is a first write history indicator;

and

the cache memory system further comprises a table storing

a plurality of write history indicators including the first
write history indicator, wherein respective write history
indicators of the plurality correspond to respective
groups of cache lines.

17. The cache memory system of claim 13, wherein the
write history indicator is a single bit for the cache memory
array.

18. The cache memory system of claim 13, wherein the
cache controller is further to perform a cache fill operation
corresponding to a second address, followed by a respective
second write operation, in response to determining that the
second address is not between the previous value of the stack
pointer and the current value of the stack pointer.

19. The cache memory system of claim 13, wherein:

the addresses specified in the requests comprise virtual

addresses; and

the cache data array comprises an array in a level-one data

cache indexed by virtual addresses.

20. A cache memory system, comprising:

means for storing cache lines;

means for performing a write operation in response to a

request specifying an address; and

means for determining whether to perform a cache fill

operation before performing the write operation, based
on whether the address is between a previous value of a
stack pointer and a current value of the stack pointer,
whether a cache line corresponds to the address, and
whether a write history indicator is set to a specified
value.



